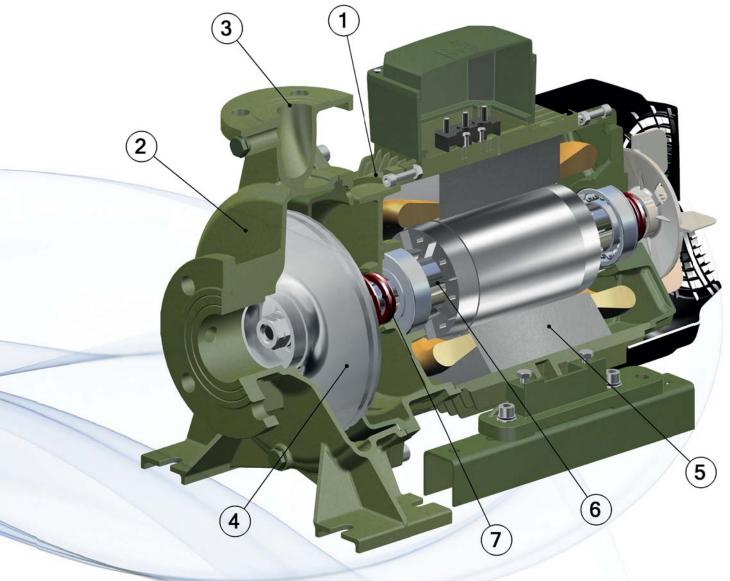


КОНСОЛЬНО-МОНОБЛОЧНЫЕ НАСОСЫ

IR



50 Hz

ПРЕИМУЩЕСТВА НОВОЙ **СЕРИИ IR**

- 1. Hacocы типа ESCC (End Suction Closed Coupling): моноблочная и компактная конструкция с целью минимизации затрат и габаритных размеров.
- 2. Конструкция "back pull-out": группа двигатель-вращающаяся часть насоса могут быть демонтированы без отделения корпуса насоса от системного трубопровода. Корпус насоса согласно стандарту EN733.
- 3. Обширная гамма: более 500 моделей в двух или четырёх полюсном исполнении, мощности от 0,37 кВт до 45 кВт, напорный патрубок от DN32 до DN150, поставляемых в различных материалах, конфигурациях и с различными двигателями.
- 4. Энергосбережение: гидравлический дизайн высокой эффективности с оптимизацией при помощи CFD и с параметрами согласно Директиве ErP (Energy relatd Products) *
- 5. Двигатели класса эффективности IE2 и IE3, согласно Директиве ErP, прекрасно расчитанные и приспособленные для использования с частотным преобразоваиелем (инвертером) в стандартном исполнении.
- 6. Конструкция расчитанная на большие нагрузки: Концевой вал из нержавеющей стали о дуплексной стали, шариковые подшипники увеличенных размеров и защищённые от внешних воздействий, чтобы гарантировать пониженный уровень шума и увеличенный срок эксплуатации.
- 7. Большая гамма механических уплотнений и материалов частей, сопрокасающихся с жидкостью. Исполнения из чугуна, морской бронзы и литой нержавеющей стали.
- 8. По запросу, исполнение с частотным преобразователем встроенным в двигатель, до 15 кВт
- 9. Насосы и двигатели "Made in Italy"

ЕВРОПЕЙСКАЯ ДИРЕКТИВА ПО ЭКОСОВМЕСТИМОМУ ПРОЕКТИРОВАНИЮ

20 ноября вступила в силу директива ЕС по энергопотребляющей продукции 2009/125/СЕ Energy-related-Products - ErP — известная также как директива об экологическом планировании. Это рамочный документ, который через различные конкретные действующие регламенты регулирует требования по экосовместимому проектированию для всех изделий, использующих электроэнергию, включая насосы и электрические двигатели. Эта директива применяется в странах Европейского экономического союза.

Директива ErP в применении к электродвигателям

Европейская директива ErP по экосовместимому проектированию для электродвигателей применяется через РЕГЛАМЕНТ (EC) № 640/2009. Директива распространяется на индукционные электродвигатели с короткозамкнутым ротором, с одной скоростью и трехфазным, с частотой 50 Гц или 50-60 Гц со следующими характеристиками:

- Скорость от 2 до 6 полюсов,
- номинальное напряжение (U N) макс. I 000 B,
- номинальная мощность (P N) от 0,75 кВт до 375 кВт,
- характеристики при работе в постоянном режиме;

и устанавливает, что

• начиная с І января 2015 г.:

двигатели с номинальной мощностью от 7,5 до 375 кВт должны иметь уровень эффективности не ниже IE3 (высокий КПД) или уровень эффективности IE2 и должны быть оснащены вариатором скорости;

• начиная с І января 2017 г.:

все двигатели с номинальной мощностью от 0,75 до 375 кВт должны иметь уровень эффективности не ниже ІЕЗ (высокий КПД) или уровень эффективности ІЕ2 и должны быть оснащены вариатором скорости;

Директива ErP в применении к насосам

Европейская директива ErP по экосовместимому проектированию для насосов применяется через РЕГЛАМЕНТ (ЕС) №547/2012, устанавливающий уровни минимальной эффективности для некоторых типов насосов чистой воды, среди которых вертикальные многоступенчатые насосы.

Регламент вводит показатель, называемый индексом минимального КПД (МЕІ), который определяет уровень эффективности насоса, и устанавливает, что:

• начиная с І января 2015 г., насосы для воды могут продаваться на рынках Евросоюза только если их индекс MEI > 0,4
Узлы электронасоса, которые не отвечают этим требованиям для двигателя или для насоса, не могут продаваться на рынке Европейского экономического сообщества и, следовательно, должны предназначаться только для рынков вне пределов ЕЭС.

Примечание: Индекс эффективности МЕІ. Насосы с индексом МЕІ<0,4 предназначены для экспорта за пределы Европейского Экономического Пространства.

L-IVE ИСПОЛНЕНИЯ С ЧАСТОТНЫМ ПРЕОБРАЗОВАТЕЛЕМ, ВСТРОЕННЫМ В ДВИГАТЕЛЬ

Насосы серии IR, снабжённые частотным преобразователем, встроенным в двигатель насоса. Частотный преобразователь регулирует скорость вращения двигателя, изменяя таким образом параметры насоса, чтобы приспособить их к рабочим условиям. Преимущества насоса, снабжённого частотным приобразователем:

- энергосбережение
- низкое воздействие на окружающую среду благодаря низким потреблениям
- меньший износ механических компонентов
- сокращение рисков гидравлического удара в системе

Основные характеристики всех частотных преобразователей SAER:

- лёгкое и функциональное программирование благодаря функции автообучения
- Защиты, включённые в стандартное оснощение:
 - сухой ход
 - работа при закрытом нагнетании
 - сверхток

- дисбаланс токов
- минимальное и максимальное напряжения
- термозащита двигателя
- Оболочка из алюминия для лучшего рассеивания тепла и большей прочности
- Работа в режиме нескольких насосов

- температура частотного преобразователя
- антиконденсат

Кроме того, для исполнений мощностью от 7,5кВт и выше:

- теплообменник высокой производительности нового поколения для рассеивания тепла, высокопроизводительный и оптимальный
- передача данных через протокол MODBUS, подсоединение осуществляется посредством серийного кабеля RS485
- Работа в режиме нескольких насосов посредством безконтактного подсоединения через систему Blue connect
- возможность подключения датчика РТ100 (по запросу)
- аналоговый выход (0-10 Vdc o 4-20 mA).

Пример

	IR	4P	32	1	60	SA	BR	0,75	230/400	50) IE2
	1	2	3		4	5	6	7	8	9	10
				IR	Стан	дартный элект	ронасос из чу	гуна EN GJL-25	0		
1	Серия			IRX	Элек	ктронасос цели	іком из нержа	веющей стали	AISI 316 (1	.4408)	
'				IR-M	Эле	ктронасос цел	иком из бронз	ы G-CuSn10			
				IRXD	Элек	ктронасос цели	іком из нержа	веющей стали	Superduple	ex	
2	Полюсн	ый		-	2-по	люсный (2900	1/min)				
				4P	4-по	люсный (1450	1/min)				
				32	DN3	2 PN10 (UNI EN	1092-2)				
				40	DN4	0 PN10 (UNI EN	1092-2)				
				50	DN5	0 PN10 (UNI EN	1092-2)				
3	DN нагн	פאועבדם		65	DN6	5 PN10 (UNI EN	1092-2)				
	DIN Hain	Стания		80	DN8	0 PN10 (UNI EN	1092-2)				
				100	DN1	00 PN10 (UNI E	N 1092-2)				
				125	DN1	25 PN10 (UNI E	N 1092-2)				
				125	øD 1	25mm					
				160	øD 1	60mm					
4	DN рабо	чего колеса		200	øD 2	00mm					
				250	øD 2	50mm					
				315	øD 3	15mm					
										A	Полный диаметр рабочего колеса
5	Подрезн	ка рабочего ко	олеса	- , N, S	Разл	ичные типолог	гии подрезок р	оабочих колёс		B, C, D	Урезанный диаметр
6	Материа	ал рабочего ко	олеса						ı		
7	Номина	льная мощнос	СТЬ В ЛС								
8	Номина	льное напряж	кение								
				50	50Hz	Z					
9	Частота	питания		60	60Hz	Z					
10	Класс эн	іергоэффекти	вности	IE1, IE2, IE3							

По производственным причинам некоторая информация может быть упущена или выражена по-разному

РАБОЧИЕ ПРЕДЕЛЫ – СТАНДАРТНЫЕ ИСПОЛНЕНИЯ IR (2900 1/min)

DN			32	40	50	65	80
1	Qmin - Qmax	m³/h	4 ÷ 55	8 ÷ 80	20 ÷ 120	30 ÷ 165	65 ÷ 280
2	H (Q=0)	m	98	129	100	95,5	64
3	PN	bar			10 (16*)		
4	P ₂ max	kW	17	45	30	45	45
5	Tw	°C			- 15/ +90 (+120*)		
6	Та	°C			-10 / + 40		
7		g/m³			65		
8		mm			3		
9		min			5 (вода Т 20°С)		

(*) По запросу

- 1. Область подачи
- Максимальный напор (Q=0)
- 3. Макс. рабочее давление: под максимальным рабочим давлением подразумевается сумма давления на входе в насос и давления развиваемого насосом при нулевой подаче [Т перекачиваемой жидкости 20°C]. Границы температуры-давления отражены в таблицах включённых в техническое приложение
- 4. Максимальная мощность
- 5. Температура перекачиваемой жидкости
- 6. Температура окружающей среды
- 7. Максимальное содержание твёрдых частиц
- 8. Максимальные размеры твёрдых частиц
- 9. Максимальное время работы при закрытом патрубке (для воды температурой 20°C)

ОПИСАНИЕ

Моноблочные электронасосы осевого всасывания с улиткой стандартизированных размеров согласно EN733, для циркуляционных, отопительных систем, систем водоснабжения, бустерных установок.

Насосы и двигатели в соотвествии с Директивой 2009/125/CE (ErP) согласно указаниям в таблице данных.

ХАРАКТЕРИСТИКИ

2 полюсное исполнение С мощностями от 0,37 кВт до 45 кВт Параметры при ~2900 об/мин Максимальный расход 280 м³/ч Максимальный напор 129 мт Направление вращения: по часовой стрелке (со стороны двигателя)

ХАРАКТИРИСТИКИ КОНСТРУКЦИИ НАСОСЫ – стандартное исполнение В соотвествии с Лироктирой 2009/125/

В соотвествии с Директивой 2009/125/СЕ (ErP) – Регламент (EU) No 547/2012 моделей с MEI>0,4.

Корпус насоса: чугун EN-GJL-250 с размерами и параметрами согласно норме EN733

Рабочее колесо: чугун EN-GJL-250 или эквивалентный материал Концевой вал: нержавеющая сталь AlSi431 (1.4057) или дуплексная сталь (1.4362)

Двунаправленное механическое уплотнение Уплотнения из арамидного волокна Унифицированные фланца UNI EN 1092-2. Ответные фланцы поставляются по запросу

ДВИГАТЕЛИ

В соотвествии с Директивой 2009/125/СЕ (ErP) – Регламент (EU) No 640/2009 и (EU) No 4/2014

ПО ЗАПРОСУ ВОЗМОЖНЫ ДРУГИЕ ОПЦИИ

- Двигатель со встроенным частотным преобразователем до 15 кВт
- Термозащита РТС
- Набор РТ100 (n°1 датчик для обмоток и n°2 датчика для подшипников)
- Неунифицированным двигателем
- Двигатель сниженного класса
- Двигатель с противоконденсатным нагревателем

• Нестандартные напряжения

Асинхронные индукционные, 2 полюсные с внешней вентиляцией (TEFC)

Защита: IP55

Класс изоляции: F

Стандартные напряжения:

≤4kW 230/400(D/Y);

≥5,5kW 400/690(D/Y)

Класс энергосбережения согласно IE1, IE2 и IE3.

ПОКРАСКА

Антикоррозийная двухкомпонентная эмаль, подходящая для контакта с питьевой водой.

Стойкость к коррозии соответствует циклу C3M согласно EN12944-6 (Цикл C5M по запросу).

УСТАНОВКА

Электронасосы могут быть установлены на горизонтальной или вертикальной оси, двигателем всегда вверх.

СПЕЦИАЛЬНЫЕ ИСПОЛНЕНИЯ

Исполнение с инвертером встроенным в двигатель до 15 кВт Исполнение с однофазным двигателем до 4 кВт Исполнения из различных материалов IRX: исполнение из нержавеющей стали AISI316 IR-М: исполнение из морской бронзы IRXD: исполнение из нержавеющей стали Superduplex

допущения

Насос согласно UNI EN ISO 9906:2012 уровень 3В (другие уровни по запросу) Двигатель: IEC 60034-1.

РАБОЧИЕ ПРЕДЕЛЫ – СТАНДАРТНЫЕ ИСПОЛНЕНИЯ

IR (1450 1/min)

DN			32	40	50	65	80	100	125
1	Qmin - Qmax	m³/h	3 ÷ 38	6 ÷64	10 ÷ 60	10 ÷ 140	40 ÷ 230	60 ÷ 275	75 ÷ 450
2	H (Q=0)	m	23,5	41	24,5	43	40,5	25	40
3	PN	bar				10 (16*)			
4	P ₂ max	kW	3	9,2	4	15	22	30	37
5	Tw	°C				- 15/ +90 (+120*)			
6	Та	°C				-10 / + 40			
7		g/m³				85			
8		mm				3			
9		min				5 (вода Т 20°С)			

(*) По запросу

- 1. Область подачи
- Максимальный напор (Q=0)
- 3. Макс. рабочее давление: под максимальным рабочим давлением подразумевается сумма давления на входе в насос и давления развиваемого насосом при нулевой подаче [Т перекачиваемой жидкости 20°C]. Границы температуры-давления отражены в таблицах включённых в техническое приложение
- 4. Максимальная мощность
- 5. Температура перекачиваемой жидкости
- 6. Температура окружающей среды
- 7. Максимальное содержание твёрдых частиц
- 8. Максимальные размеры твёрдых частиц
- 9. Максимальное время работы при закрытом патрубке (для воды температурой 20°C)

ОПИСАНИЕ

Моноблочные электронасосы осевого всасывания с улиткой стандартизированных размеров согласно EN733, для циркуляционных, отопительных систем, систем водоснабжения, бустерных установок.

Насосы и двигатели в соотвествии с Директивой 2009/125/CE (ErP) согласно указаниям в таблице данных.

ХАРАКТЕРИСТИКИ

4 полюсное исполнение Параметры при ~1450 об/мин Максимальный расход 450 м³/ч Максимальный напор: 42 мт

Направление вращения: по часовой стрелке (со стороны двигателя)

ХАРАКТИРИСТИКИ КОНСТРУКЦИИ

НАСОСЫ – стандартное исполнение В соотвествии с Лирективой 2009/125/CE (Е

В соотвествии с Директивой 2009/125/СЕ (ErP) – Регламент (EU) No 547/2012 моделей с MEI>0,4.

Корпус насоса: чугун EN-GJL-250 с размерами и параметрами согласно норме EN733

Рабочее колесо: чугун EN-GJL-250 или эквивалентный материал Концевой вал: нержавеющая сталь AISI431 (1.4057) или дуплексная сталь (1.4362)

Двунаправленное механическое уплотнение Уплотнения из арамидного волокна Унифицированные фланца UNI EN 1092-2.

Ответные фланцы поставляются по запросу

ДВИГАТЕЛИ

В соотвествии с Директивой 2009/125/CE (ErP) – Регламент (EU) No 640/2009 и (EU) No 4/2014 Асинхронные индукционные, 4 полюсные с внешней вентиляцией (ТЕГС)
Защита: IP55
Класс изоляции: F
Стандартные напряжения:

Стандартные напряжения: ≤4kW 230/400(D/Y); ≥5,5kW 400/690(D/Y)

Класс энергосбережения согласно IE1, IE2 и IE3.

ПОКРАСКА

Антикоррозийная двухкомпонентная эмаль, подходящая для контакта с питьевой водой. Стойкость к коррозии соответствует циклу СЗМ согласно EN12944-6 (Цикл C5M по запросу).

УСТАНОВКА

Электронасосы могут быть установлены на горизонтальной или вертикальной оси, двигателем всегда вверх См. страницу 234 для более подробной информации.

СПЕЦИАЛЬНЫЕ ИСПОЛНЕНИЯ

Исполнение с инвертером встроенным в двигатель до 15 кВт Исполнение с однофазным двигателем до 4 кВт Исполнения из различных материалов IRX: исполнение из нержавеющей стали AISI316 IR-M: исполнение из морской бронзы IRXD: исполнение из нержавеющей стали Superduplex

допущения

Насос согласно UNI EN ISO 9906:2012 уровень 3В (другие уровни по запросу)
Двигатель: IEC 60034-1.

по запросу возможны другие опции

- Двигатель со встроенным частотным преобразователем до 15 кВт
- Термозащита РТС
- Набор РТ100 (n°1 датчик для обмоток и n°2 датчика для подшипников)
- Неунифицированным двигателем
- Двигатель сниженного класса
- Двигатель с противоконденсатным нагревателем
- Нестандартные напряжения

МАТЕРИАЛЫ И ОСНОВНЫЕ КОМПОНЕНТЫ

Компоненты		Версия	
	IR Standard		IRX
Корпус насоса	Чугун EN-GJL-250		Литая нержавеющая сталь AISI316 (CF8M – 1.4408)
Рабочие колёса	Чугун EN-GJL-250	Литая углеродистая сталь G20Mn5	Литая нержавеющая сталь AISI316 (CF8M – 1.4408)
Диск/ уплотнительная крышка	Чугун EN-GJL-250		Литая нержавеющая сталь AISI316 (CF8M – 1.4408)
Концевой вал	Нержавеющая сталь AISI431 (1.4057)	Нержавеющая сталь Duplex 1.4362	Нержавеющая сталь Duplex 1.4362
Механическое уплотнение	20-28 C	1 2 3 4 Q1 V E GG B V E GG	1 2 3 4 Q1 Q1 V GG
		EPDM	
Уплотнение			

Механическое уплотнение

- 1) Подвижное кольцо
- 2) Неподвижное кольцо
- 3) Эластомеры
- 4) Пружина и металлические компоненты
- (В): Углерод пропитанный смолой
- (V[1-2]):Окись алюминия
- (Q1): Карбид кремния
- (E): EPDM
- (V[3]): FPM
- (G): нержавеющ ая сталь (AISI 316)
- (G4): нержавеющ ая сталь (Superduplex)

	Be	ерсия	
	IR-M		IRXD
	Бронза G-CuSn10		Нержавеющая сталь Superduplex 5A
	Бронза G-CuSn10		Нержавеющая сталь Superduplex 5A
	Бронза G-CuSn10		Нержавеющая сталь Superduplex 5A
	Нержавеющая сталь Duplex 1.4362		Нержавеющая сталь Superduplex 1.4507
	1 2 3 4 Q1 Q1 V GG		1 2 3 4 Q1 U3 E G4G4
FPM			EPDM

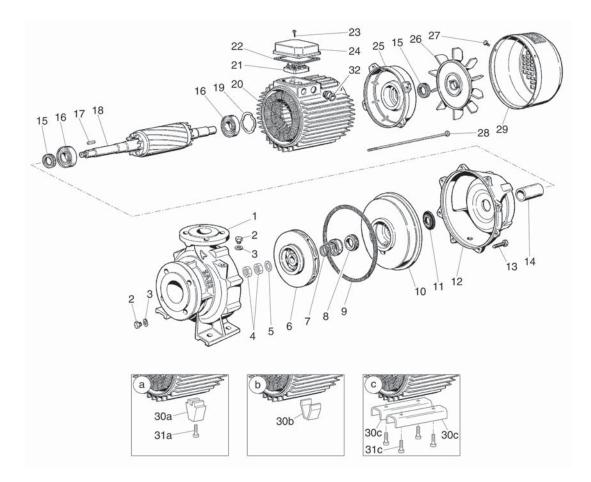
Арамидное волокно

IR 2900 1/min

ГИДРАВЛИЧЕСКИЕ ХАРАКТЕРИСТИКИ

IR32									290	0 1/r	nin								50H	lz			
	Р	2			l/s	0	1,1	1,7	2,2	3,3	4,4	5,6	6,4	6,9	7,8	8,3	9,2	9,7	10,6	11,7	12,5	13,9	15,3
Тип			MEI	Q	m³/h	0	4	6	8	12	16	20	23	25	28	30	33	35	38	42	45	50	55
	kW	HP			l/min	0	67	100	133	200	267	333	383	467	500	550	583	633	700	750	833	917	
IR32-125 C	0,75	1	>0,1			17	16,5	16	15	13	10												
IR32-125 B	1,1	1,5	>0,1	1		21	20,5	20	19	16	12												
IR32-125 A	1,5	2	>0,1			25,5	25	24,5	24,5	22	19	15											
IR32-125 SD	0,75	1	>0,4			12	11,5	11	11	10	9	8	7										
IR32-125 SC	1,1	1,5	>0,4	1		18	17,5	17	17	16	15	14	13										
IR32-125 SB	1,5	2	>0,4			22	21,5	21,5	21	20	19	18	17										
IR32-125 SA	2,2	3	>0,4			26	25,5	25	25	24	23	22	21	20,5	19	18							
IR32-160 C ³	1,5	2	>0,1			28	27,5	27	26,5	25	22	18,5											
IR32-160 B ³	2,2	3	>0,1			33	32	31,5	31	29	27	23											
IR32-160 A	3	4	>0,1			37	36,5	36	35,5	34	31,5	28											
IR32-160SC	2,2	3	>0,5			25,5		25	24,5	23	21	18											
IR32-160SB	3	4	>0,5			32,5		32	31,5	31	29	27	25,5	24	20								
IR32-160SA	4	5,5	>0,5			41		40,5	40	39,5	38	35	33	31	29	27							
IR32-160 NC	3	4	>0,3			29,5		29	29	28,5	27	25,5	24	22,5	20	18,5							
IR32-160 NB	4	5,5	>0,3			36,5		36	36	35,8	34,5	33	32	31	29	27,5	25	23					
IR32-160 NA	5,5	7,5	>0,3		H (m)	43		42,5	42,5	42	41	40	39	38	36,5	34,5	32,5	31	30				
IR32-200 N	4	5,5	>0,1			56		55	54	52	48,5												
IR32-200 NC3	4	5,5	>0,4			46		45	44	41,5	38,5	34,5	30	27,5									
IR32-200 NB ³	5,5	7,5	>0,4			53,5		53	53	52	50,5	47,5	45	43	38,5	35							
IR32-200 NA ³	7,5	10	>0,4			63		62,5	62,5	62	61,5	59,5	58	57,5	53,5	50	42,5	38,5					
IR32-250 E	7,5	10	>0,4			64			63	62,5	61,5	59	57	56,5	56								
IR32-250 D	9,2	12,5	>0,4			70			69,5	69	68,5	67	66	65,5	65	63							
IR32-250 C	11	15	>0,4			76,5			76	75,5	75	74	72	72	71,5	69							
IR32-250 B	13,5	18,3	>0,4			86			83,5	82	71,5	80	79,5	79,5	79	75							
IR32-250 A	17	23	>0,4			94			96	95	94	93	92,5	92	91	90	75						
IR32-250 SE	7,5	10	>0,6			62				57	56,5	56	53,5	52,5	49	45							
IR32-250 SD	9,2	12,5	>0,6			68				63	62	61	59,5	58,5	57	55	50						
IR32-250 SC	11	15	>0,6			76				71	70	69	68,5	68	67	65	62	60,5	56,5	50			
IR32-250 SB	12,5	17	>0,6			83				77	77	76,5	76	75,5	75	73	70	68	65	62	53		
IR 32-250SAB	15	20	>0,6			90				85	84,5	83,5	83	82,5	82	81	78	77	73,5	72	65	57	
IR32-250 SA	17	23	>0,6			98				93	92	91	91	90,5	90,5	90	88	87	85,5	83	79	72	64

IR40									290	0 1/r	min								50H	lz			
	Р	2			l/s	0	2,2	2,5	2,8	3,3	4,4	5,5	6,9	8,3	9,7	11	12	12,5	13,9	15	16,7	19,4	22
Тип	kW	НР	MEI	Q	m³/h	0	8	9	10	12	16	20	25	30	35	40	43	45	50	55	60	70	80
	KVV	""			l/min	0	133	150	167	200	266	333	417	500	583	666	717	750	833	917	1000	1167	1333
IR40-125 C	1,5	2	>0,1			19			18,5	18	17	16,5	14,5	12,5	9,5								
IR40-125 B	2,2	3	>0,1			22,5			22	22	21	20,5	19	17,5	15								
IR40-125 A	3	4	>0,1			28			27,5	27	26,5	26,5	24,5	23	20	17							
IR40-125 SD	1,5	2	>0,7			19	18,5	18	17,5	17	16,5	16	24	12									
IR40-125 SC	2,2	3	>0,7			24,5	24	24	23,5	23,5	23	23	21	19	17								
IR40-125 SB	3	4	>0,7			27,5		27	26,5	26,5	26	26	24,5	23	21	19	17						
IR40-125 SA	4	5,5	>0,7			30			29	29	28,5	28	27	26	25	23	21	19,5	17				
IR40-160 NC/B3	3	4	>0,5			32			31,5	31,5	31	30	29	26,5									
IR40-160 NC/A3	4	5,5	>0,5			32			31,5	31,5	31	30	29	26,5	23	21	18,5	16					
IR40-160 NB/B ³	4	5,5	>0,5			36,5				36	35,5	35	34	32	30								
IR40-160 NB/A ³	5,5	7,5	>0,5			36,5				36	35,5	35	34	32	30	27,5	26	24,5	20,5				
IR40-160 NA ³	5,5	7,5	>0,5			39				39	38,5	38	37,5	36	33,5	32	31,5	28,5	25,5	22			
IR40-200 C ³	4	5,5	>0,7			45				43,5	43	41	37	33,5									
IR40-200 B ³	5,5	7,5	>0,7		l (m)	49				48,5	47,5	46	43,5	40,5	36,5	31,5							
IR40-200 A ³	7,5	10	>0,7			58				58	57,5	57	55	52	48	42							
IR40-200NB	7,5	10	>0,4			53						52,5	51,5	49,4	47	44	42,5	41,5	37,5	30,5			
IR40-200NA	11	15	>0,4			61						60	59	57	56	54	52	50	47	41,5	35		
IR40-250C	9,2	12,5	>0,1			65				64	63	62	61	58,5	56	53							
IR40-250B	11	15	>0,1			71				70	69	68	67	64,5	62	59							
IR40-250A	15	20	>0,1			89				87	86	85	83	80	77	73							
IR40-250NE	12,5	17	>0,7			67,5			67	66,5	65,5	64	62	60	57	54	51,5	49	45	43			
IR40-250ND	15	20	>0,7			74			73	72,5	72	71	69,5	68	66	64	63	62	60	57	54		
IR40-250NC	17	23	>0,7			82			81	80,5	80	79	77,5	76	74,5	73	71,5	70	68	65	62	55	
IR40-250NB	18,5	25	>0,7			89			88	87,5	87	86	85	84	82	80	78,5	77	75	71	68	60	
IR40-250NA	22	30	>0,7			98		/	95	94,5	94	93	91	89	87	85	84,5	84	79	76	71	61	
IR40-315C	37	50	>0,5			100								96	95,5	95	94,5	94	93	92	90	85	80
IR40-315B	45	60	>0,5		_	129								128	127,5	127	126,5	126	125	124	122	120	118

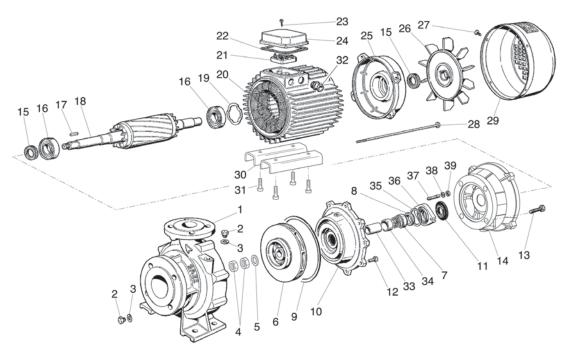


IR50									2	900	1/m	nin								50 H	lz			
	Р	2			l/s	0	5,5	6,9	8,3	9,7	11	12,5	13,9	16,7	17,8	18	19	19,4	20,8	22	23,6	25	27,8	33
Тип			MEI	Q	m³/h	0	20	25	30	35	40	45	50	60	64	65	68	70	75	80	85	90	100	120
	kW	HP			l/min	0	333	417	500	583	667	750	833	1000	1067	1083	1133	1167	1250	1333	1417	1500	1667	2000
IR50-125C	2,2	3	>0,6			17,5	17	16,5	16	15	14	13	12	8										
IR50-125B	3	4	>0,6			21	20,5	20	19,5	18,5	17,5	16,5	15	13	11	11								
IR50-125A	4	5,5	>0,6			24			23,5	23	22,5	21,5	20	17,5	17	17								
IR50-160B	5,5	7,5	>0,4			32,5		32	31	30	29	27,5	26	22	20,5	20	19	18	16,5					
IR50-160A	7,5	10	>0,4			40,5		40	39	38,5	38	37	35,5	32	30,5	30	28,5	27,5	25,5					
IR50-160NC	5,5	7,5	>0,4			30,5					27,5	27	26	23,5	22	22	21	20,5	20					
IR50-160NB	7,5	10	>0,4			39					36,5	36	35	32	30,5	30,5	29,5	29	27	25				
IR50-160NA	9,2	12,5	>0,4			44					40,5	40	39	36	35	35	34,5	34	32	30	28	26		
IR50-200C	9,2	12,5	>0,1			53		52,5	51	49	47	45	43	38										ı
IR50-200B	11	15	>0,1			57		56,5	55	54	52	50	48	42,5	40,5	40	39							
IR50-200A	15	20	>0,1			59		58,5	57	56	54,5	53	50,5	45,5	43,5	43	42	41	38					
IR50-200SD	9,2	12,5	>0,6		H (m)	50		49	48	47	46	45	42,5	37	29									
IR50-200SC	11	15	>0,6	_	1 (M)	54		53	52,5	52	51	50	48	44	33	31								
IR50-200SB	12,5	17	>0,6			59		58	57,5	57	55,5	54	53	50	44,5	43	40	38,5	34					
IR50-200SA	15	20	>0,6			62		61,5	61,5	61	60	59	57,5	54	51	50	48,5	47,5	45	36				
IR50-200NC	15	20	>0,7			53							49	48	46	46	45,5	45	44	43	41	39	36	
IR50-200NB	17	23	>0,7			62							59	57	55	55	54,5	54	52	51	49,5	48	45	
IR50-200NA	22	30	>0,7			70							67	64	63	63	62,5	62	58	57	55	53	49	41
IR50-250ND	17	23	>0,7			70		69	68	67	666	65	62,5	57	54,5	54	52	51	48	45				
IR50-250NC/B	18,5	25	>0,7			81		79	78,5	78	77,5	77	75	71	68,5	68	66	65						
IR50-250NC/A	20	27	>0,7			81		79	78,5	78	77,5	77	75	71	68,5	68	66	65	60,5	56	53			
IR50-250NB/B	22	30	>0,7			89		88,5	88	88	87	86	84,5	80	78	77,5	76	75	70,5	66				
IR50-250NB/A	25	34	>0,7			89		88,5	88	88	87	86	84,5	80	78	77,5	76	75	70,5	66	62	57		
IR50-250NA	30	40	>0,7			100		99	98,5	98	97	96	94	91	88,5	88	86	85	81	77	75	70	62	

IR65									2	900	1/n	nin								50H	lz			
	Р	2			l/s	0	8,3	11	12,5	13,9	15,3	16,7	19,4	22	23,6	26,4	27,8	30,6	33	36,1	38,9	41,6	44,4	45,8
Тип			MEI	Q	m³/h	0	30	40	45	50	55	60	70	80	85	95	100	110	120	130	140	150	160	165
	kW	HP			l/min	0	500	667	750	833	917	1000	1167	1333	1417	1583	1667	1833	2000	2167	2333	2500	2667	2750
IR65-125D	3	4	>0,5			17	16,5	16	15,5	15	14,5	14	12											
IR65-125C	4	5,5	>0,5			21	20,5	20	19,5	19	18,5	18	16	15	14									
IR65-125B	5,5	7,5	>0,5			24	23,5	23	22,5	22	22	22	21	19	18	16								
IR65-125A	7,5	10	>0,5			27	26,5	26	26	25,5	25	25	24	23,5	23	21	20	19						
IR65-160C	9,2	12,5	>0,5			33,5	33	32,5	32	31,5	31	30	29	28	26,5	24,5	23							
IR65-160B	11	15	>0,5			38,5	38	37,5	37	36,5	36,5	36	35	33	32	31	30	28						
IR65-160A	15	20	>0,5			45,5	45	44,5	44	43,5	43,5	43	42	41	40	39	38	37	35	33				
IR65-200C	15	20	>0,1			43				42	61	40	40	38	37	34,5	33	30	27	23				1
IR65-200B	18,5	25	>0,1		H (m)	48				47,5	47	46	46	45	44	41,5	40	36,5	33	30	25			
IR65-200A	22	30	>0,1			55				55	54,5	54	54	53	52	50,5	50	47	44	41	35			
IR65-200NC	18,5	25	>0,4			46		45	45	45	44,5	44,5	43	42	40,5	38,5	37	34,5	32	27	24			
IR65-200NB	22	30	>0,4			54		53	52,5	52	51,5	51	50	49	48	46	45	42,5	40	36	32	26,5	21	
IR65-200NA	30	40	>0,4			66		65	65	65	64,5	64,5	64,5	64	63	61	60	58	56	53	50	46	42	38
IR65-250NC	22	30	>0,5			69				68,5	98,5	68	66,5	65	64,5	63,5	62,5							
IR65-250NB	30	40	>0,5			76				75	75	74	73,5	72,5	71,5	70	69	67	63,5					
IR65-250NA	37	50	>0,5			89,5				89	89	89	88	86,5	86	85	84	82	79,5	76				
IR65-250NO	45	60	>0,5			95,5				95	95	94,5	94	93	92	91	90	87,5	85	81,5	78	74		

IR80									2	900	1/mii	า								50Hz	Z			
	Р	2			l/s	0	18	19,4	22,2	25	33,3	38,9	45,8	50	54,2	55,6	58,3	61,1	62,5	63,8	66,7	69,4	75	77,8
Тип			MEI	Q	m³/h	0	65	70	80	90	120	140	165	180	195	200	210	220	225	230	240	250	270	280
	kW	HP			l/min	0	1083	1167	1333	1500	2000	2333	2750	3000	3250	3333	3500	3667	3750	3833	4000	4167	4500	4667
IR80-160G	5,5	7,5	>0,6			18	17	16,5	16	15	12	10												
IR80-160F	7,5	10	>0,6			20	19,5	19	18,5	18	15,5	13,5	10,5											
IR80-160E	9,2	12,5	>0,6			25,5	25	24,5	24,5	24	21	19	16											
IR80-160D	11	15	>0,6			26,5	26	25,5	25,5	25	22,5	20,5	17,5	14,5										
IR80-160C	15	20	>0,6		LL ()	30,5		30	30	29,5	27	24	20	18,5	17									
IR80-160B	18,5	25	>0,6		H (m)	37		36	35,5	34,5	31,5	29,5	26	24	21									
IR80-160A	22	30	>0,6			40,5		40	40	39,5	37,5	36	33	30,5	28,5	27	25,5	24	23,5					
IR80-200B	30	40	>0,7			52			51,5	51	50	49	46	44	41,5	41	39,5	38	35	34,5	33	31		
IR80-200A	37	50	>0,7			59			58,5	58	57	56	53,5	51,5	50	49	47	45	43	42,5	41,5	40	35	
IR80-2000	45	60	>0,7			64			63,5	63,5	63	62,5	60	58	56,5	56	54,5	53	51	50,5	49,5	48	44	42

Для моделей указанных в таблице ниже

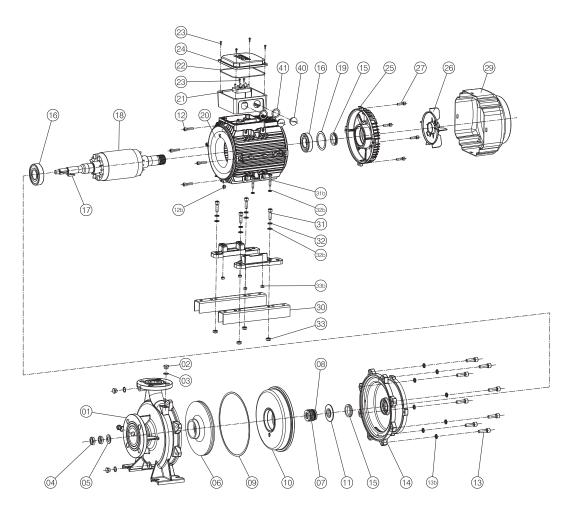


32	40	50	65	80	100	125
IR32-125A,B,C	IR40-125A,B,C	IR50-125A,B,C	IR65-125B,C,D	IR80-160A,B, G	IR4P100-250A	
IR32-125SA,SB, SC,SD	IR40-125SA,SB, SC,SD	IR50-160B	IR65-200A,B	IR4P80-160A,C		
IR32-160A,B,C	IR40-160NA, NB/A,NB/B, NC/A,NC/B	IR50-160NC	IR65-200NA, NB,NC	IR4P80-200A,B		
IR32-160SA, SB,SC	IR40-200B,C	IR50-200NA	IR65-250NA, NB,NC	IR4P80-250A,C		
IR32-160NA, NB,NC	IR40-250NA, NB	IR50-250NA,NB/ A,NB/B,NC/ A,NC/B	IR4P65-125A			
IR32-200NB, NC,N	IR40-315C	IR4P50-125A	IR4P65-125SA			
IR4P32-125A	IR4P40-125A	IR4P50-160NA	IR4P65-160A			
IR4P32-160A	IR4P40-125SA, SB	IR4P50-200SA,SB	IR4P65-200A			
IR4P32-160SA	IR4P40-160NA	IR4P50-200A	IR4P65-200NA			
IR4P32-200NA	IR4P40-200A	IR4P50- 200NA,NB	IR4P65-250NB			
IR4P32-250A,C	IR4P40-250NA, NC	IR4P50- 250NA,ND	IR4P65-250SB			
IR4P32-250SA, SB						

N.	КОМПОНЕНТЫ
1	Корпус насоса
2	Пробка
3	Уплотнение
4	Гайка
5	Шайба
6	Рабочее колесо
7▼	Подвижная часть механического уплотнения
8▼	Неподвижная часть механического уплотнения
9▼	Уплотнение
10	Уплотнительная крышка
11	Разбрызгиватель
12	Опора (вариант)
13	Винт
14▼	Втулка (только в серии IR4P)
15▼	Уплотнительное кольцо (только в серии IR)
16▼	Подшипник
17	Шпонка
18	Вал двигателя
19	Эластичное кольцо
20	Каркас с обмотанным статором
21	Укомплектованная клеммная коробка
22	Уплотнение клеммной коробки
23	Винт
24	Крышка клеммной коробки
25	Крышка двигателя
26	Крыльчатка вентилятора
27	Пружина
28	Кронштейн
29	Крышка крыльчатки вентилятора
30a	Крышка уплотнения
30b	Шайба блокировки трубы
30c	Болт
31a	Болт
31c	Полумуфта
32	Планка кабельной муфты

▼ Рекомендуемые запасные части

Для моделей указанных в таблице ниже

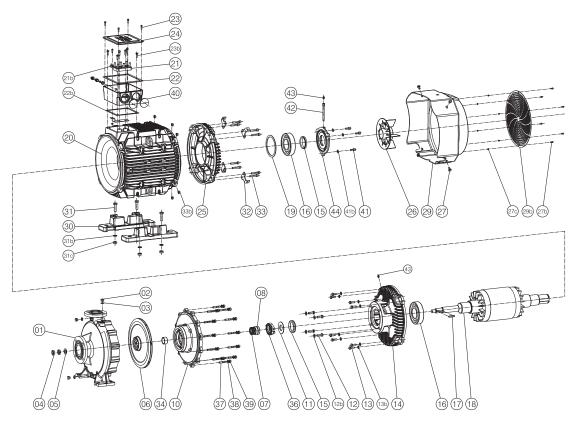


32	40	50	65	80	100	125
	IR40-125A, B,C		IR4P65-315A, B	IR4P80-315A, B,C	IR4P100-315A, B,C	IR4P125- 250A,AB,B
						IR4P125-315C

N.	КОМПОНЕНТЫ			
1	Корпус насоса			
2	Пробка			
3	Уплотнение			
4	Гайка			
5	Шайба			
6	Рабочее колесо			
7▼	Подвижная часть механического уплотнения			
8▼	Неподвижная часть механического уплотнения			
9▼	Уплотнение			
10	Уплотнительная крышка (вариант в зависимости от конструкции)			
11	Разбрызгиватель			
12	Винт			
13	Винт			
14▼	Опора			
15▼	Уплотнительное кольцо			
16▼	Подшипник			
17	Шпонка			
18	Вал двигателя			
19	Уплотнительное кольцо			
20	Каркас с обмотанным статором			
21	Укомплектованная клеммная коробка			
22	Уплотнение клеммной коробки			
23	Винт			
24	Крышка клеммной коробки			
25	Крышка двигателя			
26	Крыльчатка вентилятора			
27	Винт			
28	Тяга			
29	Крышка крыльчатки вентилятора			
30	Опорная лапа			
31	Винт			
32	Канал кабеля			
33	Втулка			
34	Проставка			
35▼	Кольцо OR			
36	Крышка механического			
37	уплотнения Винт			
38	Шайба			
39	Гайка			
	Таика			

▼ Рекомендуемые запасные части

Для моделей указанных в таблице ниже



32	40	50	65	80	100	125
IR32-200NA	IR40-200A	IR50-160A	IR65-125A	IR80-160C,D, E,F	IR4P100-200A,C	
IR32-250A,B, C,D,E	IR40-200NA,NB	IR50-160NA,NB	IR65-160A,B,C	IR4P80-200A	IR4P100-250B	
IR32-250SA, SAB,SB,SC, SD,SE	IR40-250A,B,C	IR50-200A,B,C	IR65-200C	IR4P80-250A,C		
	IR40-250NC, ND,NE	IR50-200SA, SB,SC,SD	IR4P65-250NA			
	IR40-315A,B	IR50-200NB,NC	IR4P65-250SA			
		IR50-250ND	IR4P65-315C			

N.	КОМПОНЕНТЫ				
1	Корпус насоса				
2	Пробка				
3	Уплотнение				
4	Гайка				
5	Шайба				
6	Рабочее колесо				
	Подвижная часть				
7▼	механического уплотнения				
8▼	Неподвижная часть				
• •	механического уплотнения				
9▼	Уплотнение				
10	Уплотнительная крышка (вариант в зависимости				
	от конструкции)				
11	Разбрызгиватель				
12	Винт				
12b	Гайка				
13	Винт				
13b	Шайба				
14	Опора				
15▼	Уплотнительное кольцо				
16▼	Подшипник				
17	Шпонка				
18	Вал двигателя				
19	Эластичное кольцо				
20	Каркас с обмотанным статором				
21	Укомплектованная клеммная коробка				
22	Уплотнение клеммной коробки				
23	Винт				
24	Крышка клеммной коробки				
25	Крышка двигателя				
26	Крыльчатка вентилятора				
27	Винт				
29	Крышка крыльчатки вентилятора				
30	Опорная лапа				
31	Винт				
31b	Винт				
32	Канал кабеля				
32b	Шайба				
33	Гайка				
33b	Гайка				
40	Пробка				
41	Кольцо OR				

▼ Рекомендуемые запасные части

Для моделей указанных в таблице ниже

32	40	50	65	80	100	125
	IR40-315B	IR50-160A	IR65-250NO	IR80-2000		IR4P125-315A,B

6	Рабочее колесо			
7▼	Подвижная часть			
	механического уплотнени:			
8▼	Неподвижная часть механического уплотнения			
9▼	Уплотнение			
10	Уплотнительная крышка (вариант в зависимости от конструкции)			
11	Разбрызгиватель			
12	Винт			
12b	Гайка			
13	Винт			
13b	Шайба			
14	Опора			
15	Уплотнительное кольцо			
16▼	Подшипник			
17▼	Шпонка			
18	Вал двигателя			
19	Эластичное кольцо			
20	Каркас с обмотанным статором			
20b	Укомплектованная клеммная коробка			
21	Уплотнение клеммной коробки			
21b	Винт			
22	Крышка клеммной коробки			
22b	Крышка двигателя			
23	Крыльчатка вентилятора			
23b	Винт			
24	Крышка крыльчатки вентилятора			
25	Крышка двигателя			
26	Крыльчатка вентилятора			
27	Винт			
27b	Винт			
27c	Гайка			
29	Крышка крыльчатки вентилятора			
29b	Крышка крыльчатки вентилятора			
30	Опорная лапа			
31	Винт			
31b	Шайба			
31c	Гайка			
32	Опора крышки вентилятора			
33	Винт			
33b	Гайка			
34	Распорка			
36	Крышка механического уплотнения			
37	Винт			
38	Шайба			
39	Гайка			
40	Пробка			
41	Винт			
41b	Шайба			
//2	Маслёнка Пробиз			
42	Пробка			
42 43 44	Пробка Крышка подшипника			

N.

2

3

4

5

КОМПОНЕНТЫ Корпус насоса

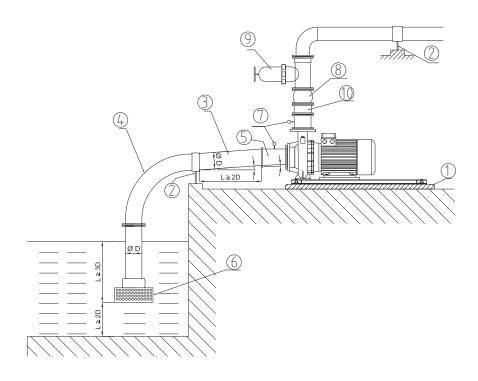
Пробка

Уплотнение

Гайка

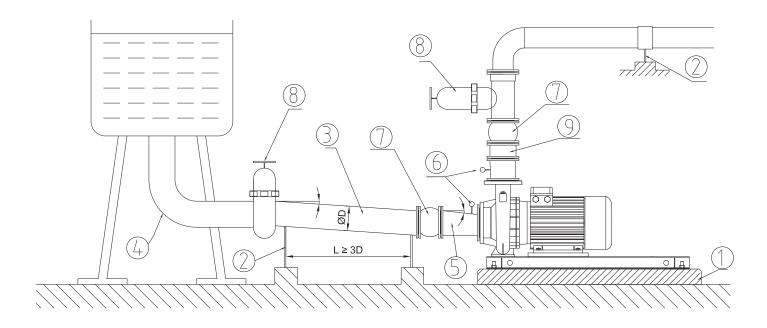
Шайба

▼ Рекомендуемые запасные части

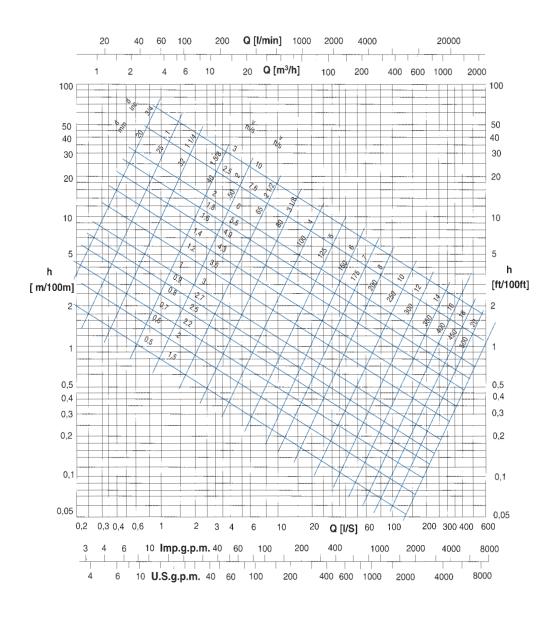


УКАЗАТЕЛЬ

Рекомендации для установки с негативным давлением на всасывании («над уровнем перекачиваемой жидкости»)	156
Рекомендации для установки с положительным давлением на всасывании («над уровнем перекачиваемой жидкости»)	157
loтеря напора	158
рекомендованные диаметры для всасывающего трубопровода	159
раницы температуры-давления	159
1нформация	160


РЕКОМЕНДАЦИИ ДЛЯ УСТАНОВКИ С НЕГАТИВНЫМ ДАВЛЕНИЕМ НА ВСАСЫВАНИИ («НАД УРОВНЕМ ПЕРЕКАЧИВАЕМОЙ ЖИДКОСТИ»)

- . Фундаменты и опора
- 2. Укрепления трубопровода
- 3. Линия всасывания
 - і. Диаметр трубопровода на всасывании: D ⊠ Tab. Pag. 229
 - ii. Скорость потока жидкости: ≤ 2 m/s
 - ііі. Положительный наклон
 - iv. Прямолинейный отрезок : ≥ 2D
- 4. Использовать изгибы с широкими радиусами
- 5. Установить внецентренный переходник, как на рисунке
- 6. Всасывающая решётка:
 - і. Площадь ≥ 4 Секция трубопровода
 - іі. Погружение ≥ 3D
 - ііі. Расстояние от пола: ≥ 2D
- 7. Установить вакуумметр на всасывающем патрубке и манометр на нагнетательном патрубке
- 8. Установить антивибрационную муфту на нагнетательном трубопроводе и на всасывании (если не является помехой всасыванию)
- 9. Установить регилирующий клапан на нагнетании
- 10. Установить обратный клапан на нагнетании / Установить обратный клапан на нагнетании
- 11. Проверить, что: NPSHa > NPSHr


РЕКОМЕНДАЦИИ ДЛЯ УСТАНОВКИ С ПОЛОЖИТЕЛЬНЫМ ДАВЛЕНИЕМ НА ВСАСЫВАНИИ («НАД УРОВНЕМ ПЕРЕКАЧИВАЕМОЙ ЖИДКОСТИ»)

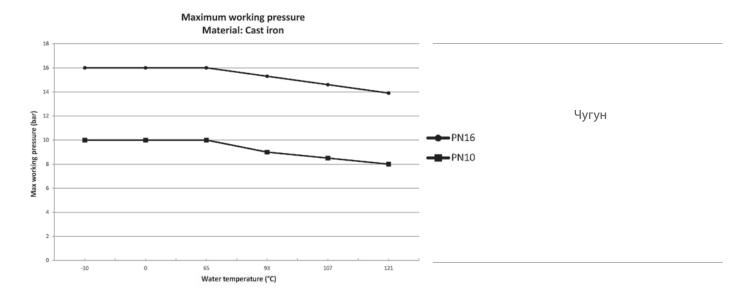
- Фундаменты и опора
- 2. Укрепления трубопровода
- 3. Линия всасывания
 - і. Диаметр трубопровода на всасывании: D ⊠ Tab. Pag. 229
 - ii. Скорость потока жидкости: ≤ 2 m/s
 - ііі. Положительный наклон
 - iv. Прямолинейный отрезок : ≥ 2D
- 4. Использовать изгибы с широкими радиусами
- 5. Установить внецентренный переходник, как на рисунке
- 6. Установить один манометр на всасывающем патрубке и другой на нагнетательном патрубке
- 7. Установить антивибрационную муфту на нагнетательном трубопроводе и на всасывании (если не является помехой всасыванию)
- 8. Установить регилирующий клапан на нагнетании
- 9. Установить обратный клапан на нагнетании / Установить обратный клапан на нагнетании
- о. Проверить, что : NPSHa > NPSHr

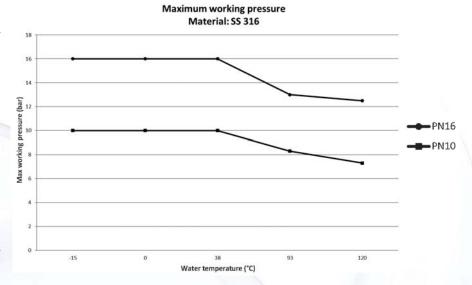
ПОТЕРЯ НАПОРА

В метрах на каждые 100 метров прямолинейного трубопровода

Примечания:

Вышеуказанные данные подразумеваются для гладких труб из чугуна. Для общей оценки потери напора должны быть умножены на:


- 0,8 Для новых ламинированных труб из стали
- 1,25 Для труб из стали, слегка покрытые ржавчиной
- 0,7 Для труб из алюминия
- 0,65 Для труб из ПВХ
- 1,25 Для труб из цемента волокна
- Q = Расход в литрах в секунду
- v = Скорость воды в метрах в секунду
- d = Диаметр трубы в мм
- h = Потеря напора в метрах водного столба


РЕКОМЕНДОВАННЫЕ ДИАМЕТРЫ ДЛЯ ВСАСЫВАЮЩЕГО ТРУБОПРОВОДА

DN [mm]	DN [mm]				
Всасывание насоса	Трубопроводы всасывания				
50	80				
65	100				
80	150				
100	200				
125	250				
150	300				
200	350				
250	400				

ГРАНИЦЫ ТЕМПЕРАТУРЫ-ДАВЛЕНИЯ

Нержавеющая сталь AISI316

ИНФОРМАЦИЯ

Минимально допустимые значения давления на линии всасывания насоса ограничены началом возникновения кавитации. Кавитация — образование пузырьков пара в жидкости, когда локальное давление достигает критического значения, то есть, когда локальное давление равно или чуть ниже давления насыщенных паров жидкости. Пузырьки пара перемещаются в потоке жидкости и когда они достигают района с более высоким давлением происходит конденсация пара. Пузырьки пара лонаются и создают волны давления, которые передаются на рабочие органы насоса, материал которых под воздействием таких циклических нагрузок начинает испытывать пластические деформации. Это явление, сопровождающееся характерным шумом, связывают с возникновением кавитации. Повреждения, вызванные кавитацией, могут усугубляться электрохимической коррозией и местными увеличениями температуры, вызванными пластической деформацией металла деталей насоса. Стальные сплавы и особенно легированные аустенитные стали являются материалами с высоким сопротивлением температуре и коррозии. Условия начала возникновения кавитации можно спрогнозировать путем расчета минимально допустимого положительного давления на всасывании (NPSH).

NPSH определяет минимальное давление на линии всасывания, требуемое данным типом насоса для работы без кавитации. Чтобы определить статический уровень жидкости на входе в насос 12, при котором он будет функционировать без возникновения кавитации, должно быть выполнено следующее

(1) $hp + hz \ge (NPSHr + 0.5) + hr + hv$

hp: абсолютное давление действующее на жидкость, выраженное в метрах водяного столба; hp это отношение атмосферного давления к объемному весу жидкости. hz это разница между уровнем установки насоса, измеренная от оси всасывающего патрубка и верхним уровнем жидкости в баке на линии всасывания, выраженная в метрах. hz становится отрицательной величиной, когда верхний уровень жидкости находится ниже оси всасывающего патрубка насоса.

hr это потери давления выраженные в метрах во всасывающем трубопроводе и арматуре, такой как приемный клапан, задвижка, отвод и т.п.

 то давление насыщенных паров жидкости при рабочей температуре, выраженное в метрах. hv это отношение Pv давления пара к объемному весу жидкости.

0.5 - коэффициент безопасности

Максимально возможная высота всасывания насоса зависит от атмосферного давления (определяемого высотой установки насоса над уровнем моря) и температуры жидкости. Следующая таблица показывает изменение потерь давления в зависимости от температуры жидкости и изменение потерь давления в зависимости от высоты установки насоса над уровнем моря (справедливо для жидкости с температурой 4 °C).

Температура жидкости (°C)		40	60	80	90	110	120
Потери давления (м)		0,7	2,0	5,0	7,4	15,4	21,5
Уровень над морем (м) 500 1000 1500 2000 2500 3000							
Потери давления (м)		1,1	1,6	5 2	,2	2,75	3,3

Потери давления могут быть определены из таблиц, представленных в каталоге. С целью снижения этих потерь насколько это возможно, особенно в случаях, когда жидкость находится ниже оси всасывания насоса более чем на 4 - 5 м,

или когда насос работает с производительностью близкой к максимальной, необходимю использовать всасывающий трубопровод большего диаметра, чем диаметр всасывающего патрубка насоса.

По-возможности, насос всегда должен быть расположен как можно ближе к перекачиваемой жидкости.

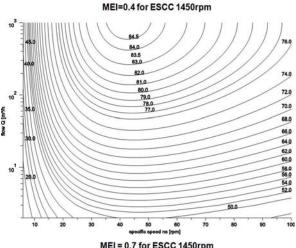
Пример расчета: Жидкость: вода, 20 °C, ρ =1 кг/дм³ Требуемый расход: 50 м³/ч Разница в уровне на всасывании: - 3 м Значение NPSH насоса: 3 м. Для воды при 15 °C hv составляет 0,17 м

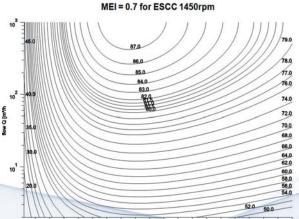
 $eh = \frac{Pa}{0} = 10,33 \text{ m}$

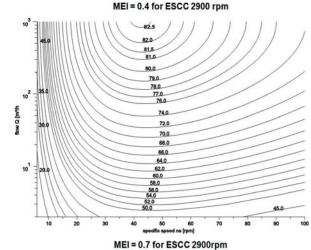
Потери давления по длине всасывающей трубы hr и местные потери в приемном клапане составляют 1,5 м Подставим исходные значения в вышеприведенную формулу

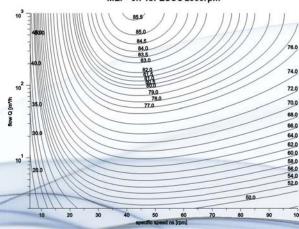
 $10.33 + (-3) \ge (3 + 0.5) + 1.5 + 0.17$

и получим, 7.33 ≥ 5.17


Условие выполнено. Это значит, что при данных условиях насос способен поднять воду с 3 метров без возникновения кавитации.


Информация о продукте в соответствии с Правилами № 547/2012, во исполнение директивы об экологическом проектировании Экодизайн (Ecodesign) 2009/125/EC


- MEI (Minimum Efficiency Index Минимальный индекс эффективности): на табличке насоса.
- Год производства, информация о производителе, тип модели и идентификатор габаритов: на табличке насоса или в документации на поставку.
- Гидравлический КПД насоса, кривые гидравлических характеристик насоса включая кривую КПД: техническая документация, каталоги.
- Информация, касающаяся разборки насоса, переработки или утилизации в конце срока службы: руководство по монтажу и эксплуатации. Критерии для самых эффективных водяных насосов MEI ≥ 0,70 (рис. 2).


Эффективность насоса с подрезкой рабочего колеса обычно ниже, чем у насоса с полноразмерным рабочим колесом. Подрезка рабочего колеса позволяет насосу лучше соответствовать рабочей точке, приводя к снижению потребления энергии. Минимальный Индекс Эффективности вычисляется исходя из полноразмерного рабочего колеса.

Работа водяного насоса в различных режимах может быть более эффективной и экономичной, например при использовании устройств регулирования частоты вращения, которые позволяют оптимизировать насос под конкретные требования системы.
Данные о критериях эффективности доступны на www.europump.org/efficiencycharts

Italia

CERTIFICATO

Nr 50 100 3317 - Rev. 06

Si attesta che / This sto certify that

IL SISTEMA QUALITÀ DI THE QUALITY SYSTEM OF

SEDE LEGALE: REGISTERED OFFICE:

VIA CIRCONVALLAZIONE 22 I-42016 GUASTALLA (RE)

SEDI OPERATIVE: / VEDI ALLEGATO 1 OPERATIONAL SITES: / SEE ANNEX 1

È CONFORME AI REQUISITI DELLA NORMA HAS BEEN FOUND TO COMPLY WITH THE REQUIREMENTS OF

UNI EN ISO 9001:2008

QUESTO CERTIFICATO È VALIDO PER IL SEGUENTE CAMPO DI APPLICAZIONE THIS CERTIFICATE IS VALID FOR THE FOLLOWING SCOPE

Progettazione e fabbricazione di elettropompe centrifughe e sommerse, motori elettrici e motori sommersi; commercializzazione dei relativi accessori (IAF 18)

Design and manufacture of centrifugal and submersible electric pumps and elettrical and submersible motors; trade of related accessories (IAF 18)

SGQ N* 049A SGA Nº 018D

PRD Nº 081B PRSN 077C LAB Nº 0076

Signatory of EA, IAF a

Per l'Organismo di Certificazione For the Certification Body

TÜV Italia S.r.l.

Validità /Validity

Dal / From:

2015-10-09

Al / To:

2018-09-14

2015-10-19

Andrea Coscia

Data emissione / Printing Date

PRIMA CERTIFICAZIONE / FIRST CERTIFICATION: 2003-10-09

"LA VALIDITÀ DEL PRESENTE CERTIFICATO È SUBORDINATA A SORVEGLIANZA PERIODICA A 12 MESI E AL RIESAME COMPLETO DEL SISTEMA DI GESTIONE AZIENDALE CON PERIODICITÀ TRIENNALE"

THE VALIDITY OF THE PRESENT CERTIFICATE DEPENDS ON THE ANNUAL SURVEILLANCE EVERY 12 MONTHS AND ON THE COMPLETE REVIEW OF COMPANY'S MANAGEMENT SYSTEM AFTER THREE-YEARS"

TÜV İtalia S.r.I. • Gruppo TÜV SÜD • Via Carducci 125, Pal. 23 • 20099 Sesto San Giovanni (MI) • İtalia • www.tuv.it